Publications

2024

Camenzind, T., Haslwimmer, H., Rillig, M.C., Rueß, L., Finn, D., Tebbe, C.C., Hempel, S., Marhan, S., 2024. Revisiting soil fungal biomarkers and conversion factors: Interspecific variability in phospholipid fatty acids, ergosterol and rDNA copy numbers. Soil Ecol. Lett. 6, 240243 (2024). https://doi.org/10.1007/s42832-024-0243-5

Camenzind, T., Aguilar-Trigueros, C., Hempel, S., Lehmann, A., Bielcik, M., Andrade-Linares, D.R., Bergmann, J., dela Cruz, J., Gawronski, J., Golubeva, P., Haslwimmer, H., Lartey, L., Leifheit, E., Maaß, S., Marhan, S., Pinek, L., Powell, J., Roy, J., Veresoglou, S., Wang, D., Wulf, A., Zheng, W., Rillig, M.C., 2024. Towards establishing the fungal economics spectrum in soil saprobic fungi. Nature Communications 15, 3321. https://www.nature.com/articles/s41467-024-47705-7

Endress, M.-G., Dehghani, F., Blagodatsky, S., Reitz, T., Schlüter, S., Blagodatskaya, E., 2024. Spatial substrate heterogeneity limits microbial growth as revealed by the joint experimental quantification and modeling of carbon and heat fluxes. Soil Biol Biochem, 109509. https://doi.org/10.1016/j.soilbio.2024.109509

Endress, M.-G., Chen, R., Blagodatskaya, E., Blagodatsky, S., 2024. The coupling of carbon and energy fluxes reveals anaerobiosis in an aerobic soil incubation with a Bacillota-dominated community. Soil Biol Biochem, 109478. https://doi.org/10.1016/j.soilbio.2024.109478

Fricke, C., Di Lodovico, E., Meyer, M., Maskow, T., Schaumann, G., 2024. Design, calibration and testing of a novel isothermal calorespirometer prototype. Thermochim. Acta, 179785. https://doi.org/10.1016/j.tca.2024.179785

Kästner, M., Maskow. T., Miltner, A., Lorenz, M., Thiele-Bruhn, S., 2024. Assessing energy fluxes and carbon use in soil as controlled by microbial activity – A thermodynamic perspective A perspective paper. Soil Biol Biochem 193, 109403. https://doi.org/10.1016/j.soilbio.2024.109403

Kästner, M., Maskow, T., Miltner, A., Lorenz, M., Thiele-Bruhn, S., Bölscher, T., Blagodatsky, S., Streck, T., Pagel, H., Blagodatskaya, E., 2024. Gibbs energy or enthalpy – What is relevant for microbial C-turnover in soils? A letter to Wang & Kuzyakov, Global Change Biology, e17183. https://doi.org/10.1111/gcb.17183

Lorenz, M., Blagodatskaya, E., Finn, D., Fricke, C., Hüging, H., Kandeler, E., Kaiser, K., Kästner, M., Lechtenfeld, O., Marhan, S., Maskow, T., Mayer, J., Miltner, A., Normant-Saremba, M., Poll, C., Resseguier, C., Rupp, A., Schrumpf, M., Schweitzer, K., Simon, C., Tebbe, C., Yang, S., Yousaf, U., Thiele-Bruhn, S., 2024. Database for the Priority Program 2322 SoilSystems –  Soils and substrates used in the first phase (2021-2024). https://doi.org/10.5281/zenodo.11207502

Lorenz, M., Maskow, T., Thiele-Bruhn, S., 2024. Energy stored in soil organic matter is influenced by litter quality and the degree of transformation – A combustion calorimetry study. Geoderma 443, 116846. https://doi.org/10.1016/j.geoderma.2024.116846

Oliva, R.L., Vogt, C., Bublitz, T.A., Camenzind, T., Dyckmans, J., Joergensen R.G., 2024. Galactosamine and mannosamine are integral parts of bacterial and fungal extracellular polymeric substances, ISME Communications, Volume 4, Issue 1, ycae038. https://doi.org/10.1093/ismeco/ycae038

Piecha, M., Kreyling, J., Couwenberg, J., Pester, M., Guenther, A., Henningsen, L., Weil, M., Jurasinski, G., Blume-Werry, G., Urich, T., Wang, H., 2024. Plant roots but not hydrology control microbiome composition and methane flux in temperate fen mesocosms. Science of The Total Environment 940, 173480. https://doi.org/10.1016/j.scitotenv.2024.173480

Schlüter, S., Lucas, M., Grosz, B., Ippisch, O., Zawallich, J., He, H., Dechow, R., Kraus, D., Blagodatsky, S., Senbayram, M., Kravchenko, A., Vogel, H.-J., Well, R., 2024. The anaerobic soil volume as a controlling factor of denitrification: a review. Biol Fertil Soils. https://doi.org/10.1007/s00374-024-01819-8

Tittel, J., Rosenlöcher, T., Dadi, O., Lechtenfeld, O.J., Simon, C., 2024. The Age of Buried Carbon Changes the Greenhouse Gas Budget of a Dam. JGR Biogeosciences 129, e2023JG007979. https://doi.org/10.1029/2023JG007979

van Bommel, M., Arndt, K., Endress, M.-G., Dehghani, F., Wirsching, J., Blagodatskaya, E., Blagodatsky, S., Kandeler, E., Marhan, S., Poll, C., Ruess, L., 2024. Under the lens: Carbon and energy channels in the soil micro-food web. Soil Biol Biochem 199, 109575. https://doi.org/10.1016/j.soilbio.2024.109575

Vogel, H.-J., Amelung, W., Baum, C., Bonkowski, M., Blagodatsky, S., Grosch, R., Herbst, M., Kiese, R., Koch, S., Kuhwald, M., König, S., Leinweber, P., Lennartz, B., Müller, C.W., Pagel, H., Rillig, M.C., Rüschhoff, J., Russell, D., Schnepf, A., Schulz, S., Siebers, N., Vetterlein, D., Wachendorf, C., Weller, U., Wollschläger, U., 2024. How to adequately represent biological processes in modeling multifunctionality of arable soils. Biol Fertil Soils 60, 263–306. https://doi.org/10.1007/s00374-024-01802-3

Wu, W., Dijkstra, P., Hungate, B. A., Shi, L., Dippold, M. A. In situ diversity of metabolism and carbon use efficiency among soil bacteria. Sci. Adv. 2022, 8, 3958. https://doi.org/10.1126/sciadv.abq3958

Yang, S., Di Lodovico, E., Rupp, A., Harms, H., Fricke, C., Miltner, A., Kästner, M., Maskow, T., 2024. Enhancing insights: exploring the information content of calorespirometric ratio in dynamic soil microbial growth processes through calorimetry. Front. Microbiol. 15:1321059. https://doi.org/10.3389/fmicb.2024.1321059

2023

Camenzind, T., Mason-Jones, K., Mansour, I., Rillig, M.C., Lehmann, J., 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nat. Geosci. 16, 115–122 (2023). https://doi.org/10.1038/s41561-022-01100-3

Kashi, H., Loeppmann, S., Herschbach, J., Schink, C., Imhof, W., Kouchaksaraee, R.M., Dippold, M.A., Spielvogel, S., 2023. Size matters: biochemical mineralization and microbial incorporation of dicarboxylic acids in soil. Biogeochemistry 162, 79–95. https://doi.org/10.1007/s10533-022-00990-0

Mason-Jones, K., Breidenbach, A., Dyckmans, J., Banfield, C.C., Dippold, M.A., 2023. Intracellular carbon storage by microorganisms is an overlooked pathway of biomass growth. Nat Commun 14, 2240. https://doi.org/10.1038/s41467-023-37713-4

2021

Kästner, M., Miltner, A., Thiele-Bruhn, S., Liang, C., 2021. Microbial Necromass in Soils — Linking Microbes to Soil Processes and Carbon Turnover. Front. Environ. Sci. 9:756378. https://doi.org/10.3389/fenvs.2021.756378